• Live Chat

    Microfluidic Technology

    Dolomite Bio systems, Nadia Instrument and Nadia Innovate, employ the principle of microfluidic flow technology?focussing to rapidly encapsulate single cells in millions of aqueous droplets in oil. The droplets are identically sized and, depending on the application, may be 10 – 100 μm in diameter (optionally with beads and reagents).

    Benefits of encapsulating cells in microfluidic droplets

    ? Enables analysis of millions of single cells
    ? ? ? ? ? ? ?? – e.g. more than 105 single-cell libraries/hour
    ? Single-cell reactions become efficient and robust
    ? ? ? ? ? ? ?? – Droplets are small (often 10s to 100s of picolitres), so e.g., effective mRNA concentration is high
    ? Reliable and reproducible performance
    ? ? ? ? ? ? ?? – Precisely-controlled micro-reactor volumes and avoidance of cross-contamination
    ? Droplets can be used as micro-compartments or micro-reactors
    ? Can capture quantitative data from rare cells

    MicrofluidictechnologyFlow focusing

    Droplet production is achieved using two immiscible fluids (aqueous droplets in a fluorocarbon oil carrier phase with bio-compatible surfactant). A flow-focusing method, coupled with extremely smooth pressure driven pumps is used to make monodisperse i.e. <5% CV (coefficient of variation) droplets. Typically, immediately prior to dropletization, two independent aqueous streams (e.g. cells and beads) are combined.

    Use of fluorinated oils and surfactants

    Fluorocarbon oil (rather than for example mineral oil) is used as the carrier phase for droplet production in Dolomite Bio Systems. This is because it is stable, inert, biocompatible and allows gas exchange. As a result, if required, cell viability can be maintained.
    A biocompatible surfactant is added to the fluorinated oil to improve droplet stability,?i.e. to ensure that droplets do not coalesce after formation.

    Introduction of cells and beads into droplets and Poisson distribution

    Cells are loaded into the μEncapsulator System as a 100μl suspension with a?pipette. In the RNA Seq System, cells are loaded into a microcentrifuge tube which is externally agitated. Beads may either be introduced in a similar way to cells or loaded via a sample loop (in the case of dense or fragile beads).

    A suspension of cells and beads will be delivered into droplets with a Poisson distribution. e.g. when aiming to achieve 1 cell per droplet, the actual number of cells per droplet, over 10 droplets, may be 1, 1, 1, 2, 0, 1, 1, 0, 1, 2.

    It is frequently desired to have not more than one cell per droplet to avoid, for example, mRNA from two cells being captured on one barcoded bead.?This is generally achieved by increasing the dilution, e.g. to 1 cell per 10 droplets, thus, minimizing the frequency of two cells in one droplet, e.g. when aiming to achieve 1 cell per 10 droplets, the number of cells per droplets, over 10 droplets, should be 0, 0, 1, 0, 0, 0, 0, 0, 0, 0.


    Intellectual property for droplet generation

    Dolomite Bio is a licensee of Japan Science and Technology Agency (“JST”) under JST’s microdroplet generation technology. We are authorised to directly grant sub-licenses under JST’s microdroplet generation technologies for R&D purposes, please contact us for other usage.
    The JST family of patents is core to much of micro-droplet technology. By purchasing a JST sub-license from Dolomite Bio, you will be gaining access to:
    WO2002/068104 Patent Family for process for producing emulsion and microcapsules and apparatus thereof, including patents 7268167, 7772287, 7717615, 7375140
    WO2005/089921 Patent Family for method and device for producing microdroplets, including patent 0196397